oadt.lang_oadt.inversion
Typing and kinding inversion lemmas.
From oadt Require Import lang_oadt.base.
From oadt Require Import lang_oadt.syntax.
From oadt Require Import lang_oadt.semantics.
From oadt Require Import lang_oadt.typing.
From oadt Require Import lang_oadt.infrastructure.
From oadt Require Import lang_oadt.equivalence.
Import syntax.notations.
Import semantics.notations.
Import typing.notations.
Implicit Types (b : bool) (x X y Y : atom) (L : aset).
#[local]
Coercion EFVar : atom >-> expr.
Section inversion.
Context (Σ : gctx).
Context (Hwf : gctx_wf Σ).
#[local]
Set Default Proof Using "Type".
From oadt Require Import lang_oadt.syntax.
From oadt Require Import lang_oadt.semantics.
From oadt Require Import lang_oadt.typing.
From oadt Require Import lang_oadt.infrastructure.
From oadt Require Import lang_oadt.equivalence.
Import syntax.notations.
Import semantics.notations.
Import typing.notations.
Implicit Types (b : bool) (x X y Y : atom) (L : aset).
#[local]
Coercion EFVar : atom >-> expr.
Section inversion.
Context (Σ : gctx).
Context (Hwf : gctx_wf Σ).
#[local]
Set Default Proof Using "Type".
Tactic Notation "kind_inv_solver" "by" tactic3(tac) :=
match goal with
| |- _; _ ⊢ ?τ :: _ -> _ => remember τ
end;
induction 1; subst; simp_hyps; simplify_eq;
tac.
Tactic Notation "kind_inv_solver" :=
kind_inv_solver by (repeat esplit; eauto; lattice_naive_solver).
Lemma kind_inv_pi Γ τ1 τ2 κ :
Σ; Γ ⊢ Π:τ1, τ2 :: κ ->
κ = <{ *@M }> /\
exists L κ1 κ2,
(∀ x, x ∉ L → Σ; (<[x:=τ1]> Γ) ⊢ τ2^x :: κ2) /\
Σ; Γ ⊢ τ1 :: κ1.
Proof.
kind_inv_solver by sfirstorder use: top_inv.
Qed.
Lemma kind_inv_bool Γ κ :
Σ; Γ ⊢ 𝔹 :: κ -> <{ *@P }> ⊑ κ.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_prod Γ τ1 τ2 κ :
Σ; Γ ⊢ τ1 * τ2 :: κ ->
exists κ',
Σ; Γ ⊢ τ1 :: κ' /\
Σ; Γ ⊢ τ2 :: κ' /\
<{ κ' }> ⊑ κ.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_sum Γ τ1 τ2 κ :
Σ; Γ ⊢ τ1 + τ2 :: κ ->
<{ *@P }> ⊑ κ /\
exists κ',
Σ; Γ ⊢ τ1 :: κ' /\
Σ; Γ ⊢ τ2 :: κ'.
Proof.
kind_inv_solver by qauto l: on use: join_ub_r
solve: lattice_naive_solver.
Qed.
Lemma kind_inv_osum Γ τ1 τ2 κ :
Σ; Γ ⊢ τ1 ~+ τ2 :: κ ->
<{ *@O }> ⊑ κ /\
Σ; Γ ⊢ τ1 :: *@O /\
Σ; Γ ⊢ τ2 :: *@O.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_gvar Γ X κ :
Σ; Γ ⊢ gvar X :: κ ->
<{ *@P }> ⊑ κ /\ exists τ, Σ !! X = Some (DADT τ).
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_app Γ e1 e2 κ :
Σ; Γ ⊢ e1 e2 :: κ ->
<{ *@O }> ⊑ κ /\
exists X τ e',
Σ !! X = Some (DOADT τ e') /\
Σ; Γ ⊢ e2 : τ /\
e1 = <{ gvar X }>.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_ite Γ l e0 τ1 τ2 κ :
Σ; Γ ⊢ if{l} e0 then τ1 else τ2 :: κ ->
<{ *@O }> ⊑ κ /\
l = low /\
Σ; Γ ⊢ e0 : 𝔹 /\
Σ; Γ ⊢ τ1 :: *@O /\
Σ; Γ ⊢ τ2 :: *@O.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_let Γ e τ κ :
Σ; Γ ⊢ let e in τ :: κ ->
<{ *@O }> ⊑ κ /\
exists τ' L,
Σ; Γ ⊢ e : τ' /\
(forall x, x ∉ L -> Σ; (<[x:=τ']> Γ) ⊢ τ^x :: *@O).
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_case Γ l e0 τ1 τ2 κ :
Σ; Γ ⊢ case{l} e0 of τ1 | τ2 :: κ ->
<{ *@O }> ⊑ κ /\
l = low /\
exists τ1' τ2' L1 L2,
Σ; Γ ⊢ e0 : τ1' + τ2' /\
(forall x, x ∉ L1 -> Σ; (<[x:=τ1']> Γ) ⊢ τ1^x :: *@O) /\
(forall x, x ∉ L2 -> Σ; (<[x:=τ2']> Γ) ⊢ τ2^x :: *@O).
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_mux Γ e0 e1 e2 κ :
Σ; Γ ⊢ ~if e0 then e1 else e2 :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_sec Γ e κ :
Σ; Γ ⊢ s𝔹 e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_pair Γ e1 e2 κ :
Σ; Γ ⊢ (e1, e2) :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_proj Γ b e κ :
Σ; Γ ⊢ π@b e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_inj Γ l b τ e κ :
Σ; Γ ⊢ inj{l}@b<τ> e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_ocase Γ e0 e1 e2 κ :
Σ; Γ ⊢ ~case e0 of e1 | e2 :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_fold Γ X e κ :
Σ; Γ ⊢ fold<X> e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_unfold Γ X e κ :
Σ; Γ ⊢ unfold<X> e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_abs Γ τ e κ :
Σ; Γ ⊢ \:τ => e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
match goal with
| |- _; _ ⊢ ?τ :: _ -> _ => remember τ
end;
induction 1; subst; simp_hyps; simplify_eq;
tac.
Tactic Notation "kind_inv_solver" :=
kind_inv_solver by (repeat esplit; eauto; lattice_naive_solver).
Lemma kind_inv_pi Γ τ1 τ2 κ :
Σ; Γ ⊢ Π:τ1, τ2 :: κ ->
κ = <{ *@M }> /\
exists L κ1 κ2,
(∀ x, x ∉ L → Σ; (<[x:=τ1]> Γ) ⊢ τ2^x :: κ2) /\
Σ; Γ ⊢ τ1 :: κ1.
Proof.
kind_inv_solver by sfirstorder use: top_inv.
Qed.
Lemma kind_inv_bool Γ κ :
Σ; Γ ⊢ 𝔹 :: κ -> <{ *@P }> ⊑ κ.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_prod Γ τ1 τ2 κ :
Σ; Γ ⊢ τ1 * τ2 :: κ ->
exists κ',
Σ; Γ ⊢ τ1 :: κ' /\
Σ; Γ ⊢ τ2 :: κ' /\
<{ κ' }> ⊑ κ.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_sum Γ τ1 τ2 κ :
Σ; Γ ⊢ τ1 + τ2 :: κ ->
<{ *@P }> ⊑ κ /\
exists κ',
Σ; Γ ⊢ τ1 :: κ' /\
Σ; Γ ⊢ τ2 :: κ'.
Proof.
kind_inv_solver by qauto l: on use: join_ub_r
solve: lattice_naive_solver.
Qed.
Lemma kind_inv_osum Γ τ1 τ2 κ :
Σ; Γ ⊢ τ1 ~+ τ2 :: κ ->
<{ *@O }> ⊑ κ /\
Σ; Γ ⊢ τ1 :: *@O /\
Σ; Γ ⊢ τ2 :: *@O.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_gvar Γ X κ :
Σ; Γ ⊢ gvar X :: κ ->
<{ *@P }> ⊑ κ /\ exists τ, Σ !! X = Some (DADT τ).
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_app Γ e1 e2 κ :
Σ; Γ ⊢ e1 e2 :: κ ->
<{ *@O }> ⊑ κ /\
exists X τ e',
Σ !! X = Some (DOADT τ e') /\
Σ; Γ ⊢ e2 : τ /\
e1 = <{ gvar X }>.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_ite Γ l e0 τ1 τ2 κ :
Σ; Γ ⊢ if{l} e0 then τ1 else τ2 :: κ ->
<{ *@O }> ⊑ κ /\
l = low /\
Σ; Γ ⊢ e0 : 𝔹 /\
Σ; Γ ⊢ τ1 :: *@O /\
Σ; Γ ⊢ τ2 :: *@O.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_let Γ e τ κ :
Σ; Γ ⊢ let e in τ :: κ ->
<{ *@O }> ⊑ κ /\
exists τ' L,
Σ; Γ ⊢ e : τ' /\
(forall x, x ∉ L -> Σ; (<[x:=τ']> Γ) ⊢ τ^x :: *@O).
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_case Γ l e0 τ1 τ2 κ :
Σ; Γ ⊢ case{l} e0 of τ1 | τ2 :: κ ->
<{ *@O }> ⊑ κ /\
l = low /\
exists τ1' τ2' L1 L2,
Σ; Γ ⊢ e0 : τ1' + τ2' /\
(forall x, x ∉ L1 -> Σ; (<[x:=τ1']> Γ) ⊢ τ1^x :: *@O) /\
(forall x, x ∉ L2 -> Σ; (<[x:=τ2']> Γ) ⊢ τ2^x :: *@O).
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_mux Γ e0 e1 e2 κ :
Σ; Γ ⊢ ~if e0 then e1 else e2 :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_sec Γ e κ :
Σ; Γ ⊢ s𝔹 e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_pair Γ e1 e2 κ :
Σ; Γ ⊢ (e1, e2) :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_proj Γ b e κ :
Σ; Γ ⊢ π@b e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_inj Γ l b τ e κ :
Σ; Γ ⊢ inj{l}@b<τ> e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_ocase Γ e0 e1 e2 κ :
Σ; Γ ⊢ ~case e0 of e1 | e2 :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_fold Γ X e κ :
Σ; Γ ⊢ fold<X> e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_unfold Γ X e κ :
Σ; Γ ⊢ unfold<X> e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Lemma kind_inv_abs Γ τ e κ :
Σ; Γ ⊢ \:τ => e :: κ -> False.
Proof.
kind_inv_solver.
Qed.
Tactic Notation "type_inv_solver" "by" tactic3(tac) :=
match goal with
| |- _; _ ⊢ ?e : _ -> _ => remember e
end;
induction 1; subst; simp_hyps; simplify_eq;
tac.
Tactic Notation "type_inv_solver" :=
type_inv_solver by (repeat esplit; eauto; equiv_naive_solver).
Lemma type_inv_prod Γ τ1 τ2 τ :
Σ; Γ ⊢ τ1 * τ2 : τ -> False.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_sum Γ l τ1 τ2 τ :
Σ; Γ ⊢ τ1 +{l} τ2 : τ -> False.
Proof.
type_inv_solver.
Qed.
match goal with
| |- _; _ ⊢ ?e : _ -> _ => remember e
end;
induction 1; subst; simp_hyps; simplify_eq;
tac.
Tactic Notation "type_inv_solver" :=
type_inv_solver by (repeat esplit; eauto; equiv_naive_solver).
Lemma type_inv_prod Γ τ1 τ2 τ :
Σ; Γ ⊢ τ1 * τ2 : τ -> False.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_sum Γ l τ1 τ2 τ :
Σ; Γ ⊢ τ1 +{l} τ2 : τ -> False.
Proof.
type_inv_solver.
Qed.
From now on proofs rely on well-formedness of global context.
#[local]
Set Default Proof Using "Hwf".
Lemma type_inv_unit Γ τ :
Σ; Γ ⊢ () : τ ->
Σ ⊢ τ ≡ 𝟙.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_lit Γ b τ :
Σ; Γ ⊢ lit b : τ ->
Σ ⊢ τ ≡ 𝔹.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_abs Γ e τ2 τ :
Σ; Γ ⊢ \:τ2 => e : τ ->
exists τ1 κ L,
Σ; Γ ⊢ τ2 :: κ /\
(forall x, x ∉ L -> Σ; (<[x:=τ2]> Γ) ⊢ e^x : τ1^x) /\
Σ ⊢ τ ≡ Π:τ2, τ1.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_gvar Γ x τ :
Σ; Γ ⊢ gvar x : τ ->
exists τ' e,
Σ !! x = Some (DFun τ' e) /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_pair Γ e1 e2 τ :
Σ; Γ ⊢ (e1, e2) : τ ->
exists τ1 τ2,
Σ; Γ ⊢ e1 : τ1 /\
Σ; Γ ⊢ e2 : τ2 /\
Σ ⊢ τ ≡ τ1 * τ2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_inj Γ b e τ' τ :
Σ; Γ ⊢ inj@b<τ'> e : τ ->
exists τ1 τ2 κ,
τ' = <{ τ1 + τ2 }> /\
Σ; Γ ⊢ τ1 + τ2 :: κ /\
Σ; Γ ⊢ e : ite b τ1 τ2 /\
Σ ⊢ τ ≡ τ1 + τ2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_oinj Γ b e τ' τ :
Σ; Γ ⊢ ~inj@b<τ'> e : τ ->
exists τ1 τ2,
τ' = <{ τ1 ~+ τ2 }> /\
Σ; Γ ⊢ τ1 ~+ τ2 :: *@O /\
Σ; Γ ⊢ e : ite b τ1 τ2 /\
Σ ⊢ τ ≡ τ1 ~+ τ2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_fold Γ X e τ :
Σ; Γ ⊢ fold<X> e : τ ->
exists τ',
Σ; Γ ⊢ e : τ' /\
Σ !! X = Some (DADT τ') /\
Σ ⊢ τ ≡ gvar X.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_boxedlit Γ b τ :
Σ; Γ ⊢ [b] : τ ->
Σ ⊢ τ ≡ ~𝔹.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_boxedinj Γ b v ω τ :
Σ; Γ ⊢ [inj@b<ω> v] : τ ->
exists ω1 ω2,
ω = <{ ω1 ~+ ω2 }> /\
ovalty <{ [inj@b<ω> v] }> ω /\
Σ ⊢ τ ≡ ω1 ~+ ω2.
Proof.
type_inv_solver by hauto lq: on ctrs: ovalty inv: ovalty
solve: equiv_naive_solver.
Qed.
Lemma type_inv_case Γ e0 e1 e2 τ :
Σ; Γ ⊢ case e0 of e1 | e2 : τ ->
exists τ1 τ2 τ' κ L1 L2,
Σ; Γ ⊢ τ'^e0 :: κ /\
Σ; Γ ⊢ e0 : τ1 + τ2 /\
(forall x, x ∉ L1 -> Σ; (<[x:=τ1]> Γ) ⊢ e1^x : τ'^(inl<τ1 + τ2> x)) /\
(forall x, x ∉ L2 -> Σ; (<[x:=τ2]> Γ) ⊢ e2^x : τ'^(inr<τ1 + τ2> x)) /\
Σ ⊢ τ ≡ τ'^e0.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_ocase Γ e0 e1 e2 τ :
Σ; Γ ⊢ ~case e0 of e1 | e2 : τ ->
exists τ1 τ2 τ' L1 L2,
Σ; Γ ⊢ τ' :: *@O /\
Σ; Γ ⊢ e0 : τ1 ~+ τ2 /\
(forall x, x ∉ L1 -> Σ; (<[x:=τ1]> Γ) ⊢ e1^x : τ') /\
(forall x, x ∉ L2 -> Σ; (<[x:=τ2]> Γ) ⊢ e2^x : τ') /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_case_ Γ l e0 e1 e2 τ :
Σ; Γ ⊢ case{l} e0 of e1 | e2 : τ ->
exists τ1 τ2 τ' κ L1 L2,
Σ; Γ ⊢ τ' :: κ /\
Σ; Γ ⊢ e0 : τ1 +{l} τ2 /\
(forall x, x ∉ L1 -> exists τ', Σ; (<[x:=τ1]> Γ) ⊢ e1^x : τ') /\
(forall x, x ∉ L2 -> exists τ', Σ; (<[x:=τ2]> Γ) ⊢ e2^x : τ') /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver by (repeat (esplit; eauto); equiv_naive_solver).
Qed.
Lemma type_inv_app Γ e1 e2 τ :
Σ; Γ ⊢ e1 e2 : τ ->
exists τ1 τ2,
Σ; Γ ⊢ e1 : Π:τ2, τ1 /\
Σ; Γ ⊢ e2 : τ2 /\
Σ ⊢ τ ≡ τ1^e2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_let Γ e1 e2 τ :
Σ; Γ ⊢ let e1 in e2 : τ ->
exists τ1 τ2 L,
Σ; Γ ⊢ e1 : τ1 /\
(forall x, x ∉ L -> Σ; (<[x:=τ1]> Γ) ⊢ e2^x : τ2^x) /\
Σ ⊢ τ ≡ τ2^e1.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_sec Γ e τ :
Σ; Γ ⊢ s𝔹 e : τ ->
Σ; Γ ⊢ e : 𝔹 /\
Σ ⊢ τ ≡ ~𝔹.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_ite Γ e0 e1 e2 τ :
Σ; Γ ⊢ if e0 then e1 else e2 : τ ->
exists τ' κ,
Σ; Γ ⊢ e0 : 𝔹 /\
Σ; Γ ⊢ e1 : τ'^(lit true) /\
Σ; Γ ⊢ e2 : τ'^(lit false) /\
Σ; Γ ⊢ τ'^e0 :: κ /\
Σ ⊢ τ ≡ τ'^e0.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_mux Γ e0 e1 e2 τ :
Σ; Γ ⊢ ~if e0 then e1 else e2 : τ ->
exists τ',
Σ; Γ ⊢ e0 : ~𝔹 /\
Σ; Γ ⊢ e1 : τ' /\
Σ; Γ ⊢ e2 : τ' /\
Σ; Γ ⊢ τ' :: *@O /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_proj Γ b e τ :
Σ; Γ ⊢ π@b e : τ ->
exists τ1 τ2,
Σ; Γ ⊢ e : τ1 * τ2 /\
Σ ⊢ τ ≡ ite b τ1 τ2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_unfold Γ X e τ :
Σ; Γ ⊢ unfold<X> e : τ ->
exists τ',
Σ !! X = Some (DADT τ') /\
Σ; Γ ⊢ e : gvar X /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver.
Qed.
End inversion.
Set Default Proof Using "Hwf".
Lemma type_inv_unit Γ τ :
Σ; Γ ⊢ () : τ ->
Σ ⊢ τ ≡ 𝟙.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_lit Γ b τ :
Σ; Γ ⊢ lit b : τ ->
Σ ⊢ τ ≡ 𝔹.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_abs Γ e τ2 τ :
Σ; Γ ⊢ \:τ2 => e : τ ->
exists τ1 κ L,
Σ; Γ ⊢ τ2 :: κ /\
(forall x, x ∉ L -> Σ; (<[x:=τ2]> Γ) ⊢ e^x : τ1^x) /\
Σ ⊢ τ ≡ Π:τ2, τ1.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_gvar Γ x τ :
Σ; Γ ⊢ gvar x : τ ->
exists τ' e,
Σ !! x = Some (DFun τ' e) /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_pair Γ e1 e2 τ :
Σ; Γ ⊢ (e1, e2) : τ ->
exists τ1 τ2,
Σ; Γ ⊢ e1 : τ1 /\
Σ; Γ ⊢ e2 : τ2 /\
Σ ⊢ τ ≡ τ1 * τ2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_inj Γ b e τ' τ :
Σ; Γ ⊢ inj@b<τ'> e : τ ->
exists τ1 τ2 κ,
τ' = <{ τ1 + τ2 }> /\
Σ; Γ ⊢ τ1 + τ2 :: κ /\
Σ; Γ ⊢ e : ite b τ1 τ2 /\
Σ ⊢ τ ≡ τ1 + τ2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_oinj Γ b e τ' τ :
Σ; Γ ⊢ ~inj@b<τ'> e : τ ->
exists τ1 τ2,
τ' = <{ τ1 ~+ τ2 }> /\
Σ; Γ ⊢ τ1 ~+ τ2 :: *@O /\
Σ; Γ ⊢ e : ite b τ1 τ2 /\
Σ ⊢ τ ≡ τ1 ~+ τ2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_fold Γ X e τ :
Σ; Γ ⊢ fold<X> e : τ ->
exists τ',
Σ; Γ ⊢ e : τ' /\
Σ !! X = Some (DADT τ') /\
Σ ⊢ τ ≡ gvar X.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_boxedlit Γ b τ :
Σ; Γ ⊢ [b] : τ ->
Σ ⊢ τ ≡ ~𝔹.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_boxedinj Γ b v ω τ :
Σ; Γ ⊢ [inj@b<ω> v] : τ ->
exists ω1 ω2,
ω = <{ ω1 ~+ ω2 }> /\
ovalty <{ [inj@b<ω> v] }> ω /\
Σ ⊢ τ ≡ ω1 ~+ ω2.
Proof.
type_inv_solver by hauto lq: on ctrs: ovalty inv: ovalty
solve: equiv_naive_solver.
Qed.
Lemma type_inv_case Γ e0 e1 e2 τ :
Σ; Γ ⊢ case e0 of e1 | e2 : τ ->
exists τ1 τ2 τ' κ L1 L2,
Σ; Γ ⊢ τ'^e0 :: κ /\
Σ; Γ ⊢ e0 : τ1 + τ2 /\
(forall x, x ∉ L1 -> Σ; (<[x:=τ1]> Γ) ⊢ e1^x : τ'^(inl<τ1 + τ2> x)) /\
(forall x, x ∉ L2 -> Σ; (<[x:=τ2]> Γ) ⊢ e2^x : τ'^(inr<τ1 + τ2> x)) /\
Σ ⊢ τ ≡ τ'^e0.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_ocase Γ e0 e1 e2 τ :
Σ; Γ ⊢ ~case e0 of e1 | e2 : τ ->
exists τ1 τ2 τ' L1 L2,
Σ; Γ ⊢ τ' :: *@O /\
Σ; Γ ⊢ e0 : τ1 ~+ τ2 /\
(forall x, x ∉ L1 -> Σ; (<[x:=τ1]> Γ) ⊢ e1^x : τ') /\
(forall x, x ∉ L2 -> Σ; (<[x:=τ2]> Γ) ⊢ e2^x : τ') /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_case_ Γ l e0 e1 e2 τ :
Σ; Γ ⊢ case{l} e0 of e1 | e2 : τ ->
exists τ1 τ2 τ' κ L1 L2,
Σ; Γ ⊢ τ' :: κ /\
Σ; Γ ⊢ e0 : τ1 +{l} τ2 /\
(forall x, x ∉ L1 -> exists τ', Σ; (<[x:=τ1]> Γ) ⊢ e1^x : τ') /\
(forall x, x ∉ L2 -> exists τ', Σ; (<[x:=τ2]> Γ) ⊢ e2^x : τ') /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver by (repeat (esplit; eauto); equiv_naive_solver).
Qed.
Lemma type_inv_app Γ e1 e2 τ :
Σ; Γ ⊢ e1 e2 : τ ->
exists τ1 τ2,
Σ; Γ ⊢ e1 : Π:τ2, τ1 /\
Σ; Γ ⊢ e2 : τ2 /\
Σ ⊢ τ ≡ τ1^e2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_let Γ e1 e2 τ :
Σ; Γ ⊢ let e1 in e2 : τ ->
exists τ1 τ2 L,
Σ; Γ ⊢ e1 : τ1 /\
(forall x, x ∉ L -> Σ; (<[x:=τ1]> Γ) ⊢ e2^x : τ2^x) /\
Σ ⊢ τ ≡ τ2^e1.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_sec Γ e τ :
Σ; Γ ⊢ s𝔹 e : τ ->
Σ; Γ ⊢ e : 𝔹 /\
Σ ⊢ τ ≡ ~𝔹.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_ite Γ e0 e1 e2 τ :
Σ; Γ ⊢ if e0 then e1 else e2 : τ ->
exists τ' κ,
Σ; Γ ⊢ e0 : 𝔹 /\
Σ; Γ ⊢ e1 : τ'^(lit true) /\
Σ; Γ ⊢ e2 : τ'^(lit false) /\
Σ; Γ ⊢ τ'^e0 :: κ /\
Σ ⊢ τ ≡ τ'^e0.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_mux Γ e0 e1 e2 τ :
Σ; Γ ⊢ ~if e0 then e1 else e2 : τ ->
exists τ',
Σ; Γ ⊢ e0 : ~𝔹 /\
Σ; Γ ⊢ e1 : τ' /\
Σ; Γ ⊢ e2 : τ' /\
Σ; Γ ⊢ τ' :: *@O /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_proj Γ b e τ :
Σ; Γ ⊢ π@b e : τ ->
exists τ1 τ2,
Σ; Γ ⊢ e : τ1 * τ2 /\
Σ ⊢ τ ≡ ite b τ1 τ2.
Proof.
type_inv_solver.
Qed.
Lemma type_inv_unfold Γ X e τ :
Σ; Γ ⊢ unfold<X> e : τ ->
exists τ',
Σ !! X = Some (DADT τ') /\
Σ; Γ ⊢ e : gvar X /\
Σ ⊢ τ ≡ τ'.
Proof.
type_inv_solver.
Qed.
End inversion.
Tactic Notation "apply_kind_inv" hyp(H) "by" tactic3(tac) :=
lazymatch type of H with
| _; _ ⊢ Π:_, _ :: _ => tac kind_inv_pi
| _; _ ⊢ 𝔹 :: _ => tac kind_inv_bool
| _; _ ⊢ _ _ :: _ => tac kind_inv_app
| _; _ ⊢ let _ in _ :: _ => tac kind_inv_let
| _; _ ⊢ _ * _ :: _ => tac kind_inv_prod
| _; _ ⊢ _ + _ :: _ => tac kind_inv_sum
| _; _ ⊢ _ ~+ _ :: _ => tac kind_inv_osum
| _; _ ⊢ gvar _ :: _ => tac kind_inv_gvar
| _; _ ⊢ ~if _ then _ else _ :: _ => apply kind_inv_mux in H; elim H
| _; _ ⊢ if{_} _ then _ else _ :: _ => tac kind_inv_ite
| _; _ ⊢ ~case _ of _ | _ :: _ => apply kind_inv_ocase in H; elim H
| _; _ ⊢ case{_} _ of _ | _ :: _ => tac kind_inv_case
| _; _ ⊢ s𝔹 _ :: _ => apply kind_inv_sec in H; elim H
| _; _ ⊢ (_, _) :: _ => apply kind_inv_pair in H; elim H
| _; _ ⊢ π@_ _ :: _ => apply kind_inv_proj in H; elim H
| _; _ ⊢ inj{_}@_<_> _ :: _ => apply kind_inv_inj in H; elim H
| _; _ ⊢ fold<_> _ :: _ => apply kind_inv_fold in H; elim H
| _; _ ⊢ unfold<_> _ :: _ => apply kind_inv_unfold in H; elim H
| _; _ ⊢ \:_ => _ :: _ => apply kind_inv_abs in H; elim H
end.
Tactic Notation "apply_kind_inv" hyp(H) :=
apply_kind_inv H by (fun lem => apply lem in H; try simp_hyp H).
Tactic Notation "apply_kind_inv" :=
do_hyps (fun H => try apply_kind_inv H).
Tactic Notation "apply_kind_inv" "*" :=
do_hyps (fun H => try dup_hyp H (fun H => apply_kind_inv H)).
Tactic Notation "apply_type_inv" hyp(H) "by" tactic3(tac) :=
lazymatch type of H with
| _; _ ⊢ () : _ => tac type_inv_unit
| _; _ ⊢ lit _ : _ => tac type_inv_lit
| _; _ ⊢ gvar _ : _ => tac type_inv_gvar
| _; _ ⊢ \:_ => _ : _ => tac type_inv_abs
| _; _ ⊢ _ _ : _ => tac type_inv_app
| _; _ ⊢ let _ in _ : _ => tac type_inv_let
| _; _ ⊢ (_, _) : _ => tac type_inv_pair
| _; _ ⊢ s𝔹 _ : _ => tac type_inv_sec
| _; _ ⊢ π@_ _ : _ => tac type_inv_proj
| _; _ ⊢ ~inj@_<_> _ : _ => tac type_inv_oinj
| _; _ ⊢ inj@_<_> _ : _ => tac type_inv_inj
| _; _ ⊢ ~if _ then _ else _ : _ => tac type_inv_mux
| _; _ ⊢ if _ then _ else _ : _ => tac type_inv_ite
| _; _ ⊢ ~case _ of _ | _ : _ => tac type_inv_ocase
| _; _ ⊢ case _ of _ | _ : _ => tac type_inv_case
| _; _ ⊢ case{_} _ of _ | _ : _ => tac type_inv_case_
| _; _ ⊢ fold<_> _ : _ => tac type_inv_fold
| _; _ ⊢ unfold<_> _ : _ => tac type_inv_unfold
| _; _ ⊢ [_] : _ => tac type_inv_boxedlit
| _; _ ⊢ [inj@_<_> _] : _ => tac type_inv_boxedinj
| _; _ ⊢ _ * _ : _ => apply type_inv_prod in H; elim H
| _; _ ⊢ _ +{_} _ : _ => apply type_inv_sum in H; elim H
end.
Tactic Notation "apply_type_inv" hyp(H) :=
apply_type_inv H by (fun lem => apply lem in H; try simp_hyp H);
try lazymatch goal with
| |- gctx_wf _ => assumption
end.
Tactic Notation "apply_type_inv" :=
do_hyps (fun H => try apply_type_inv H).
Tactic Notation "apply_type_inv" "*" :=
do_hyps (fun H => try dup_hyp H (fun H => apply_type_inv H)).